□Urgent □Return receipt □Expand Group □Restricted □Prevent Copy

Spencer Ka Tsun LEUNG/PLAND

寄件者: Chong Hermose <

寄件日期: 2025年10月09日星期四 11:18

收件者: tpbpd/PLAND

副本: Spencer Ka Tsun LEUNG/PLAND **主旨:** A/YL-PS/763:排水建議書

附件: Temporary Drainage Proposal for A_YL-PS_763.pdf

類別: Internet Email

城規會/規劃處:

現附上規劃申請: A/YL-PS/763 的排水建議書,請查收。

如有什麼問題,請隨時聯絡我,謝謝。

Ms Chong

TEMPORARY DRAINAGE PROPOSAL (FINAL)

APPLICATION SITE OF THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK FOR PRIVATE CARS, MEDIUM GOODS VEHICLES AND COACHES FOR A PERIOD OF 3 YEARS AT LOTS 688, 689(PART), 690(PART), 691(PART), 692(PART), 693(PART), 694(PART), 695(PART), 756(PART), 757(PART), 758(PART) AND 947(PART) IN D.D. 122, PING SHAN, YUEN LONG, N.T.

【 For s16 Application No. : A/YL-PS/763 】

Table of Contents

1	Intr	oduction1	Ĺ
	1.1	Background1	L
	1.2	Objectives of the Report	L
	1.3	Report Structure	L
2		elopment Proposal1	
	2.1	Location of the Application Site	L
3	Asse	essment Criteria2	•
	3.1	Design Return Periods	2
	3.2	Calculation Methodology for Runoff2	2
	3.3	Calculation Methodology for Pipe Capacity Checking	}
4	Pote	ential Drainage Impact3	}
	4.1	Existing Site Condition	3
	4.2	Changes in Drainage Characteristics	3
	4.3	Potential Drainage Impact	}
5	Con	struction Stage4	ŀ
	5.1	Temporary Drainage Arrangements	ŀ
6	Con	clusions5	;
	6.1	Conclusion	;
LI	ST OF	APPENDICES	
		ion Plan	
	Layo		
		osed Drainage Plan In Calculation of the Proposed Drainage	
		al Standard Drawings Of U-Channel and Catchpit	
LI	ST OF	TABLES	
Ta	able 3-1	Recommended Design Return Periods based on Flood Levels	2
Та	able 4-1	Design calculation of the proposed drainage work4	Į.

1 Introduction

1.1 Background

1.1.1 This report presents the Drainage Proposal for supporting the Proposed Temporary Public Vehicle Park for Private Cars, Medium Goods Vehicles and Coaches for a Period of 3 Years at Lots 688, 689(Part), 690(Part), 691(Part), 692(Part), 693(Part), 694(Part), 695(Part), 756(Part), 757(Part), 758(Part) and 947(Part) in D.D. 122, Ping Shan, Yuen Long, N.T. For the site location plan, please refer to the **Appendix A**.

1.2 Objectives of the Report

- 1.2.1 This report shall be prepared to include the following:
 - Identify the potential drainage impact assessment from the proposed Application Site
 - recommend and implement all necessary measures to mitigate adverse drainage impacts arising from the application site

1.3 Report Structure

- 1.3.1 The report contains the following sections:
 - Section 1 on Introduction;
 - Section 2 on Development Proposal;
 - Section 3 on Assessment Criteria;
 - Section 4 on Potential Drainage Impact; and
 - Section 5 on Conclusion.

2 Development Proposal

2.1 Location of the Application Site

- 2.1.1 The application Site is located within the Ping Shan Ping Shan, New Territories, with an area of around $4,300~\text{m}^2$ and ground level varying between + 8.8mPD and + 7.4mPD. The layout plan is provided in **Appendix B.**
- 2.1.2 The applied use/development is the Proposed Temporary Public Vehicle Park for Private Cars, Medium Goods Vehicles and Coache for a Period of 3 Years.

3 Assessment Criteria

3.1 Design Return Periods

3.1.1 The drainage system in the Application site is to collect surface flows and convey to downstream village drain. The recommended design return periods based on the flood levels for the various drainage systems depend on the drainage system, land use, hazard to public safety and community expectations. The recommended design return period is reproduced in Table 3-1 below:

Table 3-1 Recommended Design Return Periods based on Flood Levels

DESCRIPTION	DESIGN RETURN PERIODS
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage including internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

- 3.1.2 As per Storm Drainage Manuel (SDM) Section 6.6.2 Urban Drainage Branch and Urban Drainage Trunk Systems "An 'Urban Drainage Branch System' is defined as a group or network of connecting drains collecting runoff from the urban area and conveying stormwater to a trunk drain, river or sea. For a simple definition, the largest pipe size or the equivalent diameter in case of a box culvert in a branch system will normally be less than 1.8m.
- 3.1.3 An 'Urban Drainage Trunk System' collects stormwater from branch drains and/or river inlets, and conveys the flow to outfalls in river or sea. Pipes with size or diameter equal to or larger than 1.8m are normally considered as trunk drains."
- 3.1.4 As per SDM, since the proposed U-channels are sized smaller than 1.8m, the drainage system would be defined as an urban drainage branch with recommended design return period of 50 years.
- 3.1.5 The 50 years design return period will be considered to ensure adequacy of the stormwater drainage system.

3.2 Calculation Methodology for Runoff

3.2.1 Peak instantaneous runoff values before and after the development were calculated based on the Rational Method and with recommended physical parameters including runoff coefficient (C) and storm constants for different return periods referred to the SDM, based on the following equation:

$$Q_p = 0.278 \text{ C i A}$$

 $A = Catchment Area, km^2$

- 3.2.2 The paved area of the application site will account for 4300 m². The runoff coefficient of 0.8 is assumed.
- 3.2.3 Based on the storm constants for 50-year return period recommended in the SDM, the appropriate rainfall intensities (i) are calculated as detailed in **Appendix D**

3.3 Calculation Methodology for Pipe Capacity Checking

- 3.3.1 Because the catchment areas are less than 1ha, U-channels are recommended to be constructed to collect the stormwater runoff within the site. The collected stormwater should finally be diverted to the proposed 450mm drainpipes via the proposed U-channel system.
- 3.3.2 For the worst-case scenario, bad condition of concrete pipe is assumed for the Manning's roughness coefficient (coefficient value is 0.015) for calculating capacities of concrete U-channel using Manning's Equation.
- 3.3.3 Manning's Equation for calculating the channel and pipe capacities is adopted.

4 Potential Drainage Impact

4.1 Existing Site Condition

- 4.1.1 The application Site is located within the Ping Shan, Yuen Long, New Territories, with an area of around 4,300 m² and ground level varying between + 7.4mPD and + 8.8mPD.
- 4.1.2 There is no specific drainage provision for the current site, the collected stormwater would be discharged as surface runoff and infiltration leading to the natural stream or river.
- 4.1.3 Apart from the application site with a projected area of 4,300m² is considered as part of the catchment. The adjacent site with 6,000m² is considered as external catchment area as the runoff would discharge from the adjacent site to the manhole CP2 of the application site.

4.2 Changes in Drainage Characteristics

- 4.2.1 The characteristics of the sub-catchment areas are remained unchanged due to the temporary development for the application site, which are paved area.
- 4.2.2 The application site is fully covered by concrete surface currently. This application does not propose adding any additional concrete area, the difference in surface runoff that can be attributed to this application is negligible. Since there are no changes in Drainage Characteristics, it is considered that the drainage discharge from the Application Site will not cause adverse impact to the entire downstream drainage system.

4.3 Potential Drainage Impact

- 4.3.1 The details of the proposed drainage works are illustrated in **Appendix C**.
- 4.3.2 To effectively convey stormwater away from the application site and minimize the potential impact to the drainage infrastructure of the village area, drainage works consists of U-channels, are proposed to convey the flow to the terminate catch pit.
- 4.3.3 The runoff from the Application site is collected by U-channels along the boundary and discharged to the terminate Catch pit, which is connected to the further downstream leading to the U-channel (by others) at the south of the application site, and eventually lead to the existing village river.
- 4.3.4 The 450mm U-channel receives stormwater from the surface and the upstream catchment. For Conservative, the critical scenario is considered for collecting all the flow leading to the 450mm

U-channel. The design calculation of the proposed drainage is provided in **Appendix D**. The design calculation is summarized in Table 4-1.

Table 4-1 Design calculation of the proposed drainage work

DRAINAGE	ESTIMATED FLOW	CAPACITY	RESERVE CAPACITY
SYSTEM	(M³/S)	(M³/S)	
450mm UC	0.395	0.427	7%

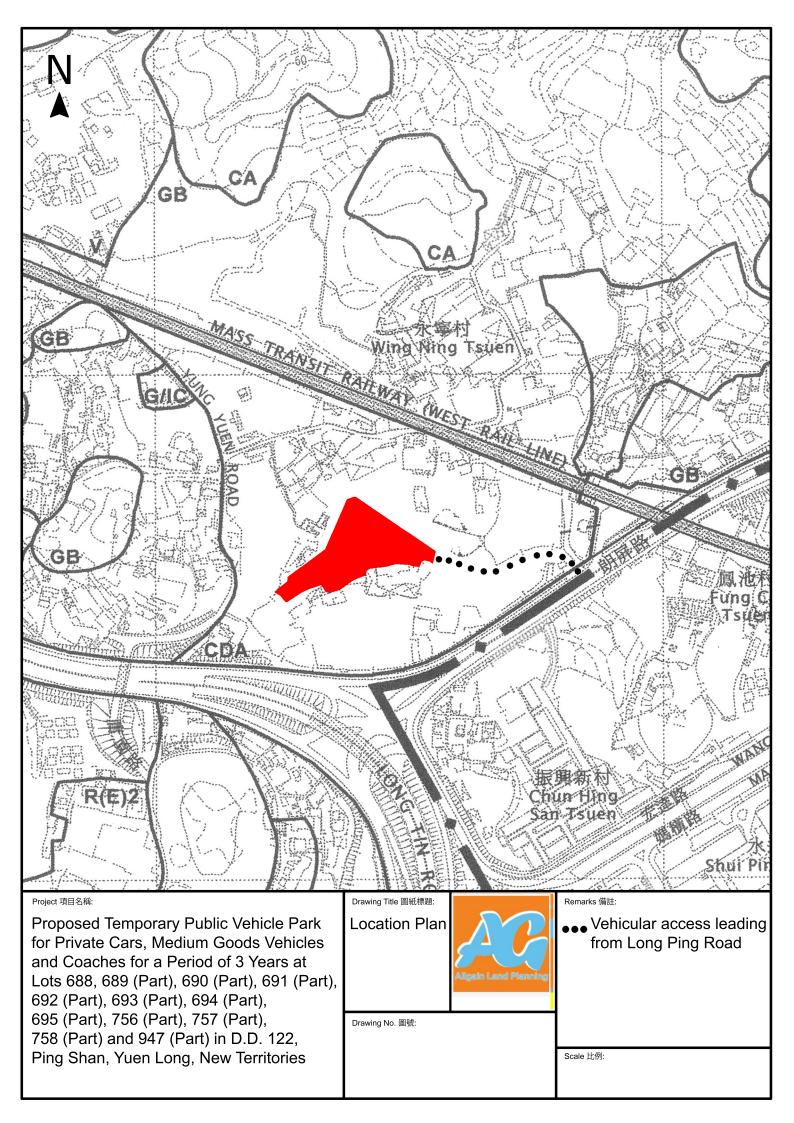
Note:

- [1] Rainfall increase due to climate change at the end of 21st century is considered according to stormwater drainage manual Table 28.
- [2] The reserve capacity is calculated by assuming that the 450mm U-channel reach its full capacity for conservative.
- 4.3.5 The design runoff arise from the proposed Application Site is to be discharged into the proposed 450mm u-channel with the runoff anticipated to be 0.395m³/s, which is within the drainage capacity of the proposed 450mm u-channel of 0.427 m³/s with gradient 1:70 with reserve capacity 7%.
- 4.3.6 All u-channels, catch pits will be constructed according to the CEDD's standard drawings, please refer to the **Appendix E.**

5 Construction Stage

5.1 Temporary Drainage Arrangements

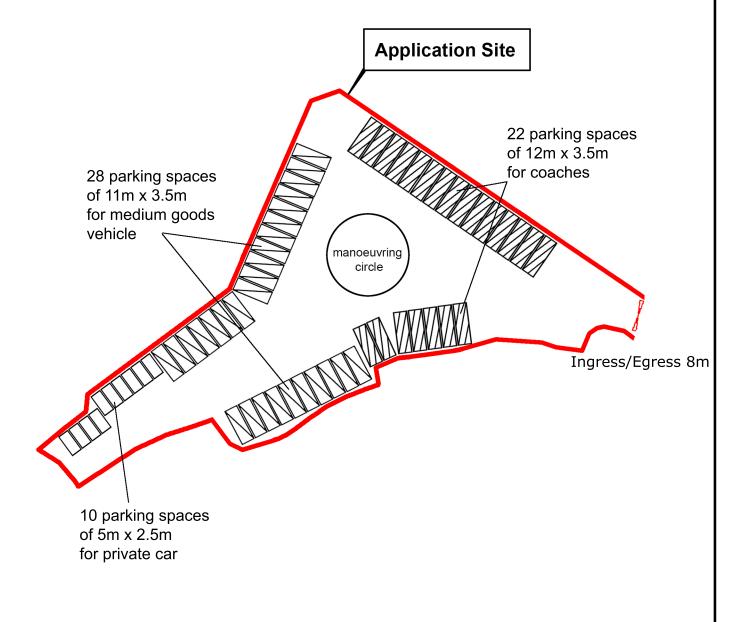
- 5.1.1 Proper measures shall be taken to maintain the existing drainage characteristics of the catchment areas and to minimize drainage impacts associated with the construction works. The principal drainage impacts which are associated with construction of the works have been identified as follows:
 - (a) Erosion of ground materials;
 - (b) Sediment transportation to existing downstream drainage system; and
 - (c) Obstruction to drainage systems.
- 5.1.2 Regular inspections shall be carried out to ensure integrity of the works. These inspections shall cover works under construction as well as recently completed areas.
- 5.1.3 To ensure proper operation of the site drainage channels and desilting facilities, inspection of the perimeter drains shall be carried out on a weekly basis and the desilting facilities shall be cleaned on a daily basis.
- 5.1.4 If excavated materials are not possible to transport away the excavated material within the same day, the material should be covered by tarpaulin/impervious sheets. Stockpiles of construction materials (for examples aggregate, fill materials) of more than 50 m³ in an open area shall also be covered with tarpaulin or similar fabric during rainstorms.
- 5.1.5 All runoff discharged into the existing drainage system will be settled in a silt trap to ensure no sediment will be discharged into the channel. Silt traps will normally be provided along the site drainage immediately upstream of the proposed discharge point to the existing Site. The silt traps will be inspected daily and immediately after each rainstorm.
- 5.1.6 Liaison will be carried out with relevant parties regarding temporary drainage arrangements to ensure that the drainage system is functioning adequately.


6 Conclusions

6.1 Conclusion

- 6.1.1 Apart from the application site with a projected area of 4,300m² is considered as part of the catchment. The adjacent site with 6,000m² is considered as external catchment area as the runoff would discharge to the manhole CP2 of the application site.
- 6.1.2 U-channels are proposed to convey runoff from the application site for collection. The proposed U-channels are located along the site boundary which is subject to change to suit the building layout.
- 6.1.3 The assessment reviews and demonstrates the drainage pipe have the sufficient capacity to cater for the drainage flow from the Application Site.
- 6.1.4 Mitigation measures are proposed during the application site proposed Application Site and to ensure that the existing drainage system within the site will not be affected during the construction stage.

END OF TEXT


APPENDIX A SITE LAYOUT PLAN

APPENDIX B

LAYOUT PLAN

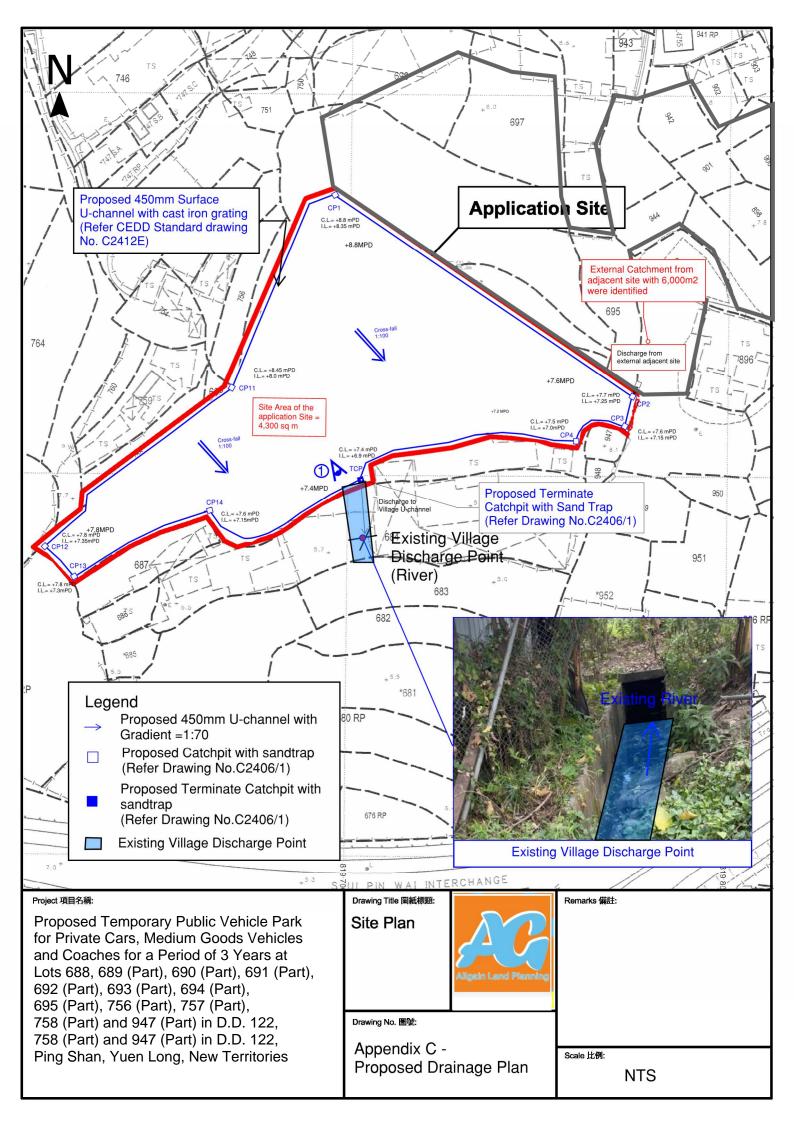
Project 項目名稱:

Proposed Temporary Public Vehicle Park for Private Cars, Medium Goods Vehicles and Coaches for a Period of 3 Years at Lots 688, 689 (Part), 690 (Part), 691 (Part), 692 (Part), 693 (Part), 694 (Part), 695 (Part), 756 (Part), 757 (Part), 758 (Part) and 947 (Part) in D.D. 122, Ping Shan, Yuen Long, New Territories

Drawing Title 圖紙標題: Layout Plan

Drawing No. 圖號:

Remarks 備註:


Medium Goods Vehicle

Coaches

Private Car

Scale 比例:

APPENDIX C
PROPOSED DRAINAGE PLAN

APPENDIX D

DESIGN CALCULATION OF THE PROPOSED DRAINAGE

. 0.1808 m²

0.01

2.363 m/s

 $0.427 \text{ m}^3/\text{s}$ $0.395 \text{ m}^3/\text{s}$

7%

OK

Design Data

- 1. Design follows the Rational Method in accordance with Stormwater Drainage Manual 2018 (DSD)
- 2. Runoff coefficient for paved land is 0.8.
- 3. Design return period is 50 years.
- 4. For manning's equation coeffient n is 0.015.

Check for Hydraulic Capacity:

Catchment	K	Area (A)
Application Site	0.80	4300.0 m ²
adjacent site	0.80	6000.0 m ²
Total catchment area		8240.0 m ²

				112
	Runoff estimation	,	-	
	Average slope, H		=	0.5 /100m
	Catchment area, A		=	8240 m ²
	Distance between summit and point under consideration, L		=	100 m
SDM 7.5.2	Time of concentration of natural catchment, to		=	$0.14465 \times L / (H^{0.2} \times A^{0.1})$
			=	6.74 min.
	Length of drain, L _j		=	200 m
	Velocity, V _j		=	2.363 m/s
SDM 7.5.2	Flow time, t _f		=	$\Sigma (L_j / V_j)$
			=	1.411 min.
	Time of concentration, t _c		=	$t_o + t_f$
			=	8.15 min.
SDM Table 3	Storm constants for 50-year return period:	а	=	451.3
		b	=	2.46
		С	=	0.337
SDM 4.3.2	Extreme mean intensity, i _{50yr}		=	$a / (t_d + b)^c$
			=	172.48 mm/hr
GMS Fig 8.2			<	405.000 mm/hr
SDM 7.5.2	Design flow, Q		=	0.278 i Σ Κ Α
			=	0.395 m ³ /s
	450mm u-channel capacity			
	Diameter Diameter		=	450 mm

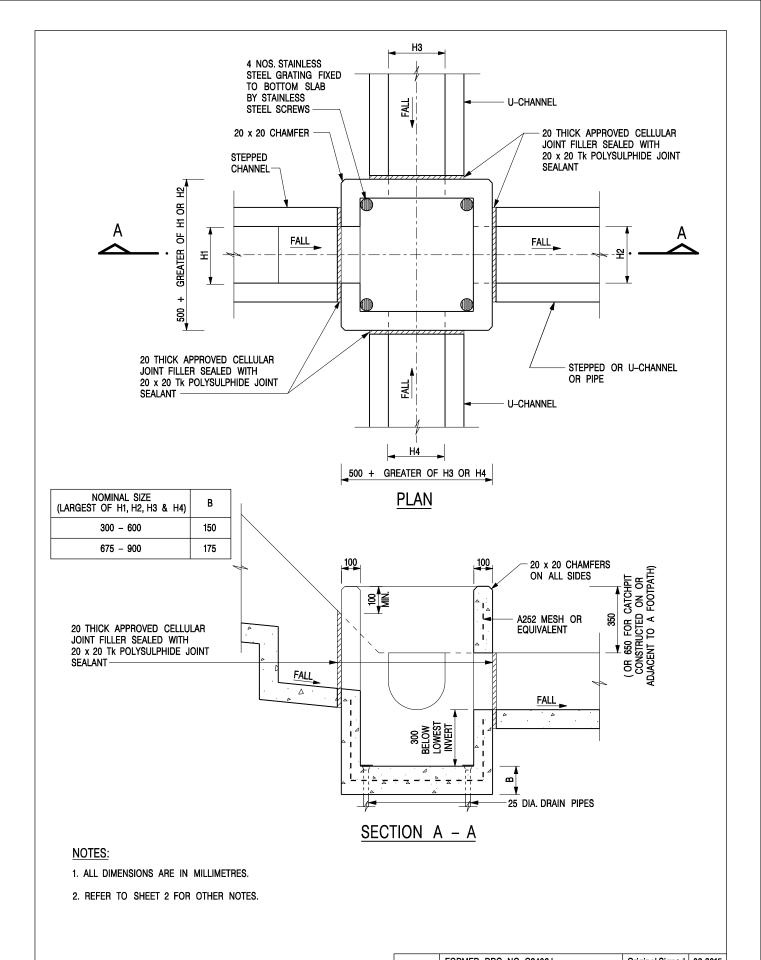
For conservative, all the U-channel along the site boundary shall be 450mm.

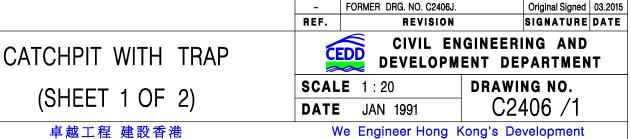
Cross-sectional area of 450mm U-channel

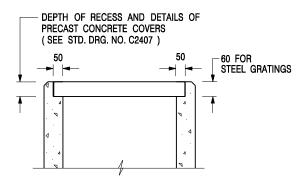
Gradient

Manning's Eq.

flow velocity


Design Capacity


Reserve capacity


APPENDIX E

TYPICAL STANDARD DRAWINGS OF U-CHANNEL AND CATCHPIT

(EXTRACTED FROM CEDD, FOR REFERNCE ONLY)

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

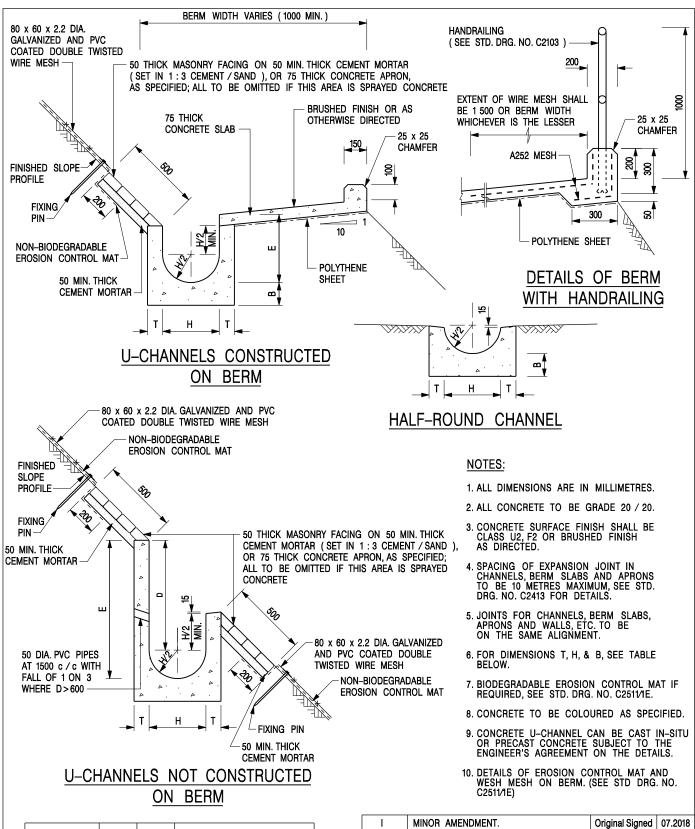
NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- 11. FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

Α	MINOR AMENDMENT.	Original Signed	04.2016
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
REF.	REVISION	SIGNATURE	DATE

CATCHPIT WITH TRAP (SHEET 2 OF 2)

卓越工程 建設香港



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:20 **DATE** JAN 1991

DRAWING NO. C2406 /2A

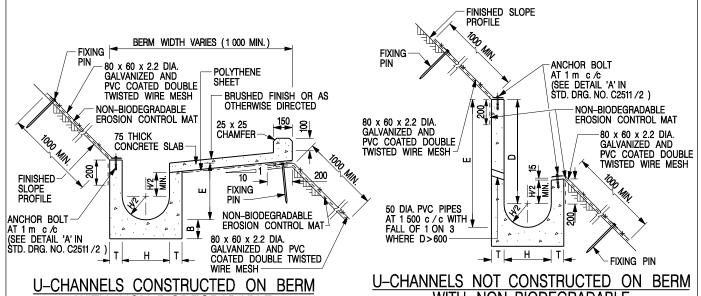
We Engineer Hong Kong's Development

NOMINAL SIZE H	Т	В	REINFORCEMENT
300	80	100	A252 MESH PLACED CENTRALLY AND T=100
375 - 600	100	150	WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

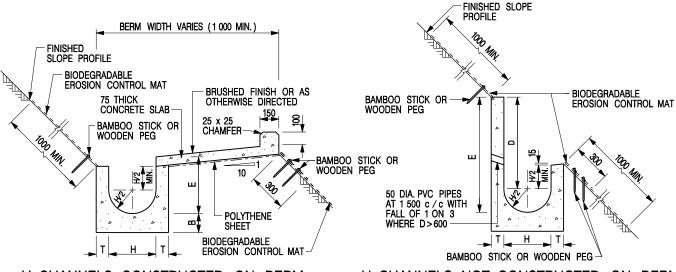
	ı	MINOR AMENDMENT.	Original Signed	07.2018
	Н	THICKNESS OF MASONRY FACING AMENDED.	Original Signed	01.2005
	G	MINOR AMENDMENT.	Original Signed	01.2004
	F	GENERAL REVISION.	Original Signed	12.2002
	E	DRAWING TITLE AMENDED.	Original Signed	11.2001
	D	MINOR AMENDMENT.	Original Signed	08.2001
	С	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
	В	MINOR AMENDMENTS.	Original Signed	3.94
ı	REF.	REVISION	SIGNATURE	DATE

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE A -WITH MASONRY APRON)

卓越工程 建設香港



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT


 SCALE
 1:25
 DRAWING NO.

 DATE
 JAN 1991
 C24091

We Engineer Hong Kong's Development

U-CHANNELS CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT <u>U-CHANNELS NOT CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT</u>

U-CHANNELS CONSTRUCTED ON BERM WITH BIODEGRADABLE EROSION CONTROL MAT

U-CHANNELS NOT CONSTRUCTED ON BERM WITH BIODEGRADABLE EROSION CONTROL MAT

NOTES:

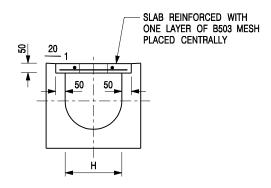
- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE TO BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2, F2 OR BRUSHED FINISH AS DIRECTED.
- 4. SPACING OF EXPANSION JOINT IN CHANNELS, BERM SLABS AND APRONS TO BE 10 METRES MAXIMUM, SEE STD. DRG. NO. C2413 FOR DETAILS.
- 5. JOINTS FOR CHANNELS, BERM SLABS, APRONS AND WALLS, ETC. TO BE ON THE SAME ALIGNMENT.
- 6. FOR DIMENSIONS T, H, & B, SEE TABLE BELOW.
- FOR TYPICAL FIXING PIN DETAILS, SEE STD. DRG. NO. C2511/2.
- 8. MINIMUM SIZE OF 25 x 50 x 300mm SHALL BE PROVIDED FOR WOODEN PEG.
- MINIMUM SIZE OF 10mm DIAMETER WITH 200mm LONG SHALL BE PROVIDED FOR BAMBOO STICK.
- 10. THE FIXING DETAILS OF NON-BIODEGRADABLE AND BIODEGRADABLE EROSION CONTROL MATS ON EXISTING BERM SHALL REFER TO STD. DRG. NO. C2511/1.

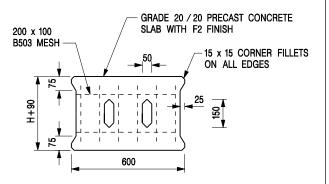
NOMINAL SIZE H	Т	В	REINFORCEMENT
300	80	100	A252 MESH PLACED CENTRALLY AND T=100
375 - 600	1	WHEN E>650	
675 - 900	125	175	A252 MESH PLACED CENTRALLY

DETAILS	OF H	HALF-I	ROUN	D.	AND
U-CHAN	NELS	(TYP	ЕВ-	- W	/ITH
EROSION	CON	TROL	MAT	AP	RON)

1	MINOR AMENDMENT.	Original Signed	07.2018
Н	FIXING DETAILS OF BIODEGRADABLE EROSION CONTROL MAT ADDED.	Original Signed	12.2017
G	DIMENSION TABLE AMENDED.	Original Signed	01.2005
F	MINOR AMENDMENT.	Original Signed	01.2004
E	GENERAL REVISION.	Original Signed	12.2002
D	MINOR AMENDMENT.	Original Signed	08.2001
С	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
В	MINOR AMENDMENT.	Original Signed	3.94
Α	MINOR AMENDMENT.	Original Signed	10.92
REF.	REVISION	SIGNATURE	DATE

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

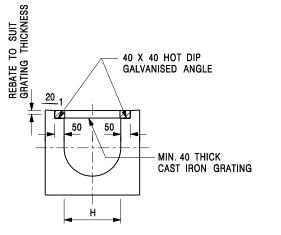

SCALE DIAGRAMMATIC

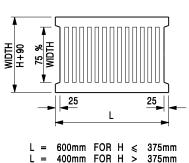

DATE JAN 1991

DRAWING NO. C24101

卓越工程 建設香港

We Engineer Hong Kong's Development




TYPICAL SECTION

PLAN OF SLAB

U-CHANNELS WITH PRECAST CONCRETE SLABS

(UP TO H OF 525)

TYPICAL SECTION

CAST IRON GRATING

(DIMENSIONS ARE FOR GUIDANCE ONLY, CONTRACTOR MAY SUBMIT EQUIVALENT TYPE)

U-CHANNEL WITH CAST IRON GRATING

(UP TO H OF 525)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. H=NOMINAL CHANNEL SIZE.
- 3. ALL CAST IRON FOR GRATINGS SHALL BE GRADE EN-GJL-150 COMPLYING WITH BS EN 1561.
- 4. FOR COVERED CHANNELS TO BE HANDED OVER TO HIGHWAYS DEPARTMENT FOR MAINTENANCE, THE GRATING DETAILS SHALL FOLLOW THOSE AS SHOWN ON HyD STD. DRG. NO. H3156.

REF.	REVISION	SIGNATURE	DATE
Α	CAST IRON GRATING AMENDED.	Original Signed	12.2002
В	NAME OF DEPARTMENT AMENDED.	Original Signed	01.2005
С	MINOR AMENDMENT. NOTE 3 ADDED.	Original Signed	12.2005
D	NOTE 4 ADDED.	Original Signed	06.2008
E	NOTES 3 & 4 AMENDED.	Original Signed	12.2014

COVER SLAB AND CAST IRON GRATING FOR CHANNELS

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

 SCALE 1:20
 DRAWING NO.

 DATE JAN 1991
 C2412E

卓越工程 建設香港 We Engineer Hong Kong's Development